Lie idempotent algebras

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Twisted Lie Algebras and Idempotent of Dynkin

In this paper we define a Dynkin idempotent for twisted Hopf algebras and generalize the results of Patras and Reutenauer in the classical case. We treat as a special case the free Lie algebra and so generalize the results of Waldenfels.

متن کامل

Lie $^*$-double derivations on Lie $C^*$-algebras

A unital $C^*$ -- algebra $mathcal A,$ endowed withthe Lie product $[x,y]=xy- yx$ on $mathcal A,$ is called a Lie$C^*$ -- algebra. Let $mathcal A$ be a Lie $C^*$ -- algebra and$g,h:mathcal A to mathcal A$ be $Bbb C$ -- linear mappings. A$Bbb C$ -- linear mapping $f:mathcal A to mathcal A$ is calleda Lie $(g,h)$ -- double derivation if$f([a,b])=[f(a),b]+[a,f(b)]+[g(a),h(b)]+[h(a),g(b)]$ for all ...

متن کامل

Structure of Locally Idempotent Algebras

It is shown that every locally idempotent (locallym-pseudoconvex) Hausdorff algebra A with pseudoconvex vonNeumannbornology is a regular (respectively, bornological) inductive limit of metrizable locallym-(kB-convex) subalgebras AB of A. In the case where A, in addition, is sequentially BA-complete (sequentially advertibly complete), then every subalgebraAB is a locally m-(kB-convex) Fréchet al...

متن کامل

Some properties of nilpotent Lie algebras

In this article, using the definitions of central series and nilpotency in the Lie algebras, we give some results similar to the works of Hulse and Lennox in 1976 and Hekster in 1986. Finally we will prove that every non trivial ideal of a nilpotent Lie algebra nontrivially intersects with the centre of Lie algebra, which is similar to Philip Hall's result in the group theory.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Mathematics

سال: 2003

ISSN: 0001-8708

DOI: 10.1016/s0001-8708(02)00045-2